Вариант для подготовки к контрольной работе № 1

Тестовая часть

1.	Материальная точка движется в плоскости xy по закону $x(t) = At$, $y(t) = Bt^2 + Ct$, где
	A,B и C -положительные постоянные. При этом V_y - проекция вектора скорости на
	ось $y,\ a_x$ - проекция вектора ускорения на ось $x,\ a$ - модуль полного ускорения, $a_{ au}$ -
	модуль тангенциального ускорения. Укажите ошибочное соотношение:

A)
$$V_y = 2Bt + C$$
 B) $a_\tau = 2B$ B) $a = 2B$ Γ $a_x = 0$

2. Тело брошено под углом α к горизонту с начальной скоростью v_0 . В момент максимального подъема тела тангенциальное ускорение равно:

A)	$v_0 \cos \alpha$	Б)	$v_0^2 \sin^2 \alpha$	B)	0
	g		g		

3. Твердое тело вращается вокруг неподвижной оси так, что угол поворота зависит от времени по закону $\varphi = Ct^3$, где C = 1 рад/ c^3 . Угловая скорость тела в конце третьей секунды равна:

A)	6 рад/с	Б)	9 рад/с	B)	27 рад/с

4. Небольшое тело массой m=1 кг движется в плоскости xy так, что проекции его скорости на оси координат зависят от времени по закону $v_x = 3t + 4$, $v_y = 4t + 3$ ($v_x, v_y, t - 8$ единицах СИ). Модуль равнодействующей приложенных к телу сил равен:

		, ,			1					
A)	5 H		Б)	1 H		B)	7 H	Γ)	4 H	

5. На горизонтально расположенный стол поместили тележку с укрепленным на ней кронштейном, к которому на нити подвешен шарик. Если тележка будет двигаться поступательно с ускорением \vec{a} , то в системе отсчета, связанной с тележкой, на шарик начнет действовать сила инерции:

A)	сонаправленная с вектором ускорения
Б)	противоположная по направлению вектору ускорения
B)	сонаправленная с вектором скорости
Γ)	направленная вертикально вниз

6. Вдоль оси Ox движутся две частицы, массы которых равны $m_1 = 8$ г, $m_2 = 1$ г, со скоростями $V_{1x} = 1$ м/с и $V_{2x} = -28$ м/с соответственно. В каком направлении движется центр масс системы?

A)	в положительном направлении оси Ох
Б)	в отрицательном направлении оси Ох
B)	$\vec{V}_c = 0$

7.	Два тела движутся во взаимно перпендикулярных направлениях. Первое тело массой 5 кг
	движется со скоростью 2 м/с, второе тело массой 10 кг – со скоростью 1 м/с. Чему равен
	суммарный импульс шаров после абсолютно неупругого соударения?

A)	14 кг∙м/с	B)	18 кг∙м/с
Б)	16 кг⋅м/с	Γ)	20 кг⋅м/с

8. Тело прошло путь 10 м под действием силы, которая равномерно уменьшалась от $F_1 = 8$ Н в начале пути до $F_2 = 2$ Н в конце. Работа силы на всем пути равна:

A)	50 Дж	Б)	60 Дж
B)	80 Дж	Γ)	120 Дж

9. Работа консервативных сил:

A)	не зависит от формы пути и определяется только началь-
	ным и конечным положениями материальной точки
Б)	всегда равна нулю
B)	всегда положительна
Γ)	всегда отрицательна

10. Мяч, летящий со скоростью \mathcal{U}_0 , отбрасывается ракеткой в противоположную сторону со скоростью \mathcal{U} . Если изменение кинетической энергии ΔW , то модуль изменения импульса равен:

A)	2 <i>∆W</i>	Б)	$2W(v+v_0)$	B)	<u>2⊿W</u>	Γ)	ΔW
	$\overline{v+v_0}$		$v^2 + v_0^2$		$v - v_0$		$\overline{2(v_0+v)}$

11. Потенциальная энергия частицы, движущейся по оси Ox в силовом поле, $U = -\alpha x^2$. При этом модуль ускорения точки $a \sim x^n$. Найдите значение n.

 A)
 1
 Б)
 3
 B)
 2
 Г)
 1/2
 Д)
 3/2

12. Тело массы m бросили с башни высотой h со скоростью \vec{v}_0 . Оно упало на землю со скоростью \vec{v} . Работа силы сопротивления воздуха равна:

A)	$A_{\text{comp}} = m g h$	B)	$A_{\text{comp}} = \frac{m}{2}(v_0^2 - v^2)$
Б)	$A_{\text{comp}} = \frac{m}{2} (\upsilon^2 - \upsilon_0^2) - mgh$	Γ)	$A_{\text{comp}} = \frac{m}{2} (v_0^2 - v^2) + mgh$

Задача

13. Точка движется, замедляясь, по окружности радиуса R так, что в каждый момент ее тангенциальное и нормальное ускорения одинаковы по модулю. В момент t=0 скорость точки равна V_0 . Найдите зависимость скорости V точки от времени.

Ответы

Номер зада- ния	Ответ	Номер зада- ния	Ответ
1	Б	8	A
2	В	9	A
3	В	10	В
4	A	11	A
5	Б	12	Б
6	Б	13	$V = \frac{V_0}{1 + \frac{V_0}{R}t}$
7	A		