Демонстрационный вариант контрольной работы № 1

Тестовая часть

1. Материальная точка движется равномерно по окружности со скоростью υ и за некоторое время проходит 3/4 окружности. Модуль вектора средней скорости точки за это время равен

2. Закон движения точки имеет вид $\vec{r} = At^2\vec{i} + Bt^2\vec{j} + C\vec{k}$, где A = 3 м/с², B = 4 м/с², C = 7 м, \vec{i} , \vec{j} и \vec{k} - орты осей x, y и z прямоугольной системы координат. Путь, пройденный точкой за первые t = 10 с движения, равен

 A)
 25 м
 Б)
 100 м
 В)
 150 м
 Г)
 500 м
 Д)
 707 м

3. Твердое тело вращается вокруг неподвижной оси так, что угол поворота зависит от времени по закону $\varphi = Ct^3$, где C=1 рад/ c^3 . Угловая скорость тела в конце третьей секунды равна

A)	6 рад/с	Б)	9 рад/с	B)	27 рад/с

- 4. Через блок, ось которого жестко закреплена, перекинута легкая нерастяжимая нить. К концам нити подвешены гири массами $m_1 = m_2 = 1$ кг. Какую силу нужно приложить к одной из гирь, чтобы гири стали двигаться с ускорением a = 3 м/с²? Блок невесом, трение в оси блока отсутствует.
- 5. Небольшое тело массой m=2 кг движется прямолинейно так, что пройденный путь зависит от времени по закону $s=B\,t+C\,t^2$, где $B=1\,\text{м/c},\,C=2\,\text{м/c}^2$. Сила, действующая на тело в конце первой секунды движения, равна

|--|

6. Вдоль оси Ox движутся две частицы, массы которых равны $m_1 = 8$ г, $m_2 = 1$ г, со скоростями $V_{1x} = 1$ м/с и $V_{2x} = -28$ м/с соответственно. В каком направлении движется центр масс системы?

A)	в положительном направлении оси Ох
Б)	в отрицательном направлении оси Ох
B)	$\vec{V}_c = 0$

7. Свободно падающий шарик массой m=200 г ударился о пол, имея скорость $\upsilon=5$ м/с, и подпрыгнул на высоту h=80 см. Найдите модуль изменения импульса шарика при ударе. Сопротивлением воздуха пренебречь.

A)	0,2 кг·м/с	B)	1,3 кг∙м/с
Б)	0,8 кг∙м/с	Γ)	1,8 кг∙м/с

8.	На частицу, находящуюся в начале координат, действует сила $\vec{F}=4\vec{i}+3\vec{j}$, где \vec{i} и \vec{j} -
	орты осей х и у соответственно. Найдите работу, совершенную этой силой при пере-
	мещении частицы в точку с координатами (4, 3). Здесь компоненты силы и координа-
	ты частицы – в единицах СИ.

А) 9 Дж Б) 12 Дж В) 20 Дж Г))	9 Лж	Б)	12 Лж	B)	20 Лж	L)	25 Лж
------------------------------	---	------	----	-------	----	-------	----	-------

9. Работа консервативных сил

A)	не зависит от формы пути и определяется только началь-					
	ным и конечным положениями материальной точки					
Б)	всегда равна нулю					
B)	всегда положительна					
Γ)	всегда отрицательна					

- 10. Тело массой m = 1 кг, брошенное с балкона в горизонтальном направлении со скоростью $v_0 = 10$ м/с, через t = 1 с упало на землю. Определите кинетическую энергию T, которую имело тело в момент удара о землю. Сопротивлением воздуха пренебречь.
- 11. Потенциальная энергия частицы, движущейся по оси Ox в силовом поле, $U = -\alpha x^2$. При этом модуль ускорения точки $a \sim x^n$. Найдите значение n.

 A)
 1
 Б)
 3
 B)
 2
 Г)
 1/2
 Д)
 3/2

12. Тело массы m бросили с башни высотой h со скоростью \vec{v}_0 . Оно упало на землю со скоростью \vec{v} . Работа силы сопротивления воздуха равна

 	T WOOTH TIMES TO THE CHIMBUTTHEST) 110 P 02110
A)	$A_{\rm conp} = m g h$	B)	$A_{\rm conp} = \frac{m}{2} (v_0^2 - v^2)$
Б)	$A_{\text{conp}} = \frac{m}{2} (v^2 - {v_0}^2) - mgh$	Γ)	$A_{\text{comp}} = \frac{m}{2} (v_0^2 - v^2) + mgh$

Задача

13. Точка движется, замедляясь, по окружности радиуса R так, что в каждый момент ее тангенциальное и нормальное ускорения одинаковы по модулю. В момент t=0 скорость точки равна V_0 . Найдите зависимость скорости V точки от времени.

Ответы

Номер зада- ния	Ответ	Номер зада- ния	Ответ
1	В	8	Γ
2	Γ	9	A
3	В	10	100 Дж
4	6 H	11	A
5	В	12	Б
6	Б	13	$V = \frac{V_0}{1 + \frac{V_0}{R}t}$
7	Γ		